‘grep’ to match lines

grep “pattern” file
grep -v “garbage” file
grep -i “pattern” file
grep “[abc]” file

grep “[1-5]" file

grep “~[0-9]" file

grep “\.$"” file

Searches “pattern” in “file”

Only print lines without “garbage”
Ignores the case

Lines which have an “a”, “b"” or “c”
Lines which have numbers from 1 to 5
Lines which start with a number

Lines which end with a dot

‘awk’ to work with columns

awk ‘{print $1,$2}’' file
awk ‘$3 > 500 {print $1}’ file

awk ‘seen[$0]++ == 1 {print $1}’' file

Prints the 1lst and 2nd columns of the file
Prints the 1lst col only if 3rd is over 500

Prints 1lst column of duplicate lines

‘sed’ to substitute text

sed “s/old/new/g” file
sed “1,2s/old/new/g” file

sed -i “s/old/new/g” file

Changes all occurrences of “old” to “new”
Only for the first two lines

Overwrites the file contents

other tools

sort -g file
we file
head -n 1 file

tail -f logfile

Sorts all lines, with numerical preference
Counts the words, lines and chars of a file
Shows only the first line of a file

Shows the last lines plus any new lines

gnuplot <<< ‘set term png; set output “file.png”; plot “1l.txt” w lines lw 2 notitle’

perl -e “print uc $i”
seq -s “, " -w 0 3 20
cut -c 12-13 file

paste file_columnl file column2

Run a one-line Perl command
Numbers from 0 to 20, step 3, zero-padded
Get chars 12 and 13 in each line

Append, line by line, in a single line

bash scripts

name="Pepe”; echo $name

four=$((2+2))

first_line="head -n 1 file"

if [“$a” == “$b”]; then A; else B; fi
for i in *; do mv $i $i.old; done

for i in newdir{0..9}; do mkdir $i; done
nohup wget http://ubuntu.com/cd.iso &

cat <<< “Hello” >> output.txt

Declares a variable and prints it
Evaluates an expression

Assigns the output of a command
Conditional expression

Iterate on all files

Iterate on a new list of elements

Detach and run in background

Fakes an input file, appends it to the output

